CsF-Catalyzed Alkylation of Gamma-Carbolines with Fluorine-Containing 3-Vinylpyridines

V. B. Sokolov, A. Yu. Aksinenko, and S. O. Bachurin

Institute of Physiologically Active Substances, Russian Academy of Sciences, Severnyi proezd 1, Chernogolovka, Moscow oblast, 142432 Russia e-mail: alaks@ipac.ac.ru

Received May 29, 2014

Abstract—CsF-Catalyzed alkylation of gamma-carbolines with 3-vinyl-5-fluoropyridine and 3-vinyl-6-trifluoromethylpyridine led to the formation of 5-[2-(5-fluoropyrid-2-yl)ethyl]-2,3,4-tetrahydro-1*H*-pyrido[4,3-*b*]-indoles and 5-[2-(6-trifluoromethylpyrid-2-yl)ethyl]-2,3,4-tetrahydro-1*H*-pyrido[4,3-*b*]indoles.

Keywords: gamma-carbolines, vinylpyridine, the Michael reaction, fluoride ion

DOI: 10.1134/S1070363214090084

Gamma-carboline derivatives are widely used in medical and pharmaceutical chemistry due to their antihistamine [1], antidopamine [2] and antiserotonin activity [3]. For example, the Russian antihistamine drug Dimebon also exhibits a pronounced therapeutic effect against a number of neurodegenerative and neurological diseases [4–6]. Studies in the field of purposeful search for new neuroprotectors among gamma-carbolines derivatives are promising for designing effective agents for the treatment of various neuropathies [7–9].

In this work we developed an approach towards synthesis of fluorinated analogs of Dimebon containing 5-fluoro- and (6-trifluoromethypyridin-3-yl)ethylsubstituted indole fragment. This method was based on a catalyzed alkylation of gamma-carbolines with 3-vinyl-5-fluoropyridine and 3-vinyl-6-trifluoromethylpyridine.

Generally, the main known methods for alkylating gamma-carbolines with vinylpyridines by Michael addition include the use of equimolar amounts of strong bases, for example methoxide or sodium hydride as promoters in DMSO or DMSO–60%-aqueous KOH system [10–12].

In the case of 3-vinyl-5-fluoropyridine and 3-vinyl-6-trifluoromethylpyridine the use of these promoters is not acceptable, since under the reaction conditions (150°C, DMSO) a nucleophilic substitution of the

fluorine atom in 3-vinyl-5-fluoropyridine and a destruction of the C–F bond in 3-vinyl-6-trifluoromethylpyridine occur. In this connection, we studied the possibility of using cesium fluoride, which is a source of strong base, fluoride ion [13], as a catalyst for gamma-carbolines alkylation.

It was found that reactions of equimolar amounts of gamma-carbolines **I** and fluorine-containing 3-vinyl-pyridines **II** or **III** under heating in DMSO at 160°C in the presence of catalytic amounts of CsF afforded substituted 5-[2-(5-fluoropyridin-3-yl)ethyl]-2,3,4,5-tetra-hydro-1*H*-pyrido[4,3-*b*]indoles **IV** or 5-[2-(6-trifluoromethylpyridin-3-yl)ethyl]-2-ethyl-2,3,4,5-tetrahydro-1*H*-pyrido[4,3-*b*]indoles **V** in yields of 75–80%. In the case of 3-vinyl-5-fluoropyridine **II** or less reactive 3-vinyl-6-trifluoromethylpyridine the reaction time was 6 or 12 h, respectively (Scheme 1).

The synthesized compounds **IVa**, **IVb**, **Va**, and **Vb** were colorless crystalline substances whose composition and structure were proved by elemental analysis and ¹H, ¹⁹F NMR spectroscopy. In the ¹H NMR spectra of compounds **IV** and **V** there were triplet signals of the ethylene spacer linking gammacarboline and pyridine moieties (3.01–3.05 and 4.16–4.21 ppm). The signals of fluorine atom of the pyridine ring of **IV** appeared at –47.46 and –48.22 ppm. The signals of CF₃-group of the pyridine ring of **V** were observed at 9.59 and 10.01 ppm.

IV, V: $R = CH_3(a), C_2H_5(b)$.

In summary, we developed an original method of CsF-catalyzed alkylation of gamma-carbolines by fluorine-containing 3-vinylpyridines. This synthetic approach can be successfully used in obtaining both known and potential neuroprotective agents in a series of fluorine-containing gamma-carbolines.

EXPERIMENTAL

¹H (200.13 MHz) and ¹⁹F (188.29 MHz) NMR spectra were recorded on a Bruker DPX 200 instrument, internal reference TMS or external reference CF₃COOH, respectively. Melting points were determined in glass capillaries.

Gamma-carbolines **Ia** and **Ib** were prepared as described in [14]. Vinyl pyridines **II** and **III** were obtained by the procedure reported in [15].

2,8-Dimethyl-5-[2-(5-fluoropyridin-3-yl)ethyl]2,3,4,5-tetrahydro-1*H***-pyrido[4,3-b]indole (IVa).** A mixture of 1 mmol of **Ia**, 1 mmol of **II**, 0.1 g of CsF, and 0.02 g of hydroquinone in 1.5 mL of DMSO was heated with stirring at 150–160°C for 6 h. Then DMSO was removed in a vacuum at 3 mmHg. The product was extracted from the residue by CH_2Cl_2 , evaporated, and chromatographed on silica gel (60 μ m) eluting with MeOH–CHCl₃ mixture (1 : 10). Yield 0.26 g (80%), mp 103–104°C. ¹H NMR spec-

trum (CDCl₃), δ , ppm: 2.41 s (3H, Me), 2.49–2.56 m (5H, CH₂ + MeN), 2.71 t (2H, CH₂, ${}^3J_{\text{HH}}$ 6.1 Hz), 3.02 t (2H, CH₂, ${}^3J_{\text{HH}}$ 6.1 Hz), 3.63 s (2H, CH₂), 4.21 t (2H, CH₂, ${}^3J_{\text{HH}}$ 6.1 Hz), 6.88 d. t (1H, CH_{Py}, ${}^3J_{\text{HF}}$ 9.1, ${}^4J_{\text{HH}}$ 1.9 Hz), 6.98 d (1H, CH_{Ind}, ${}^3J_{\text{HH}}$ 8.4 Hz), 7.10 d (1H, CH_{Ind}, ${}^3J_{\text{HH}}$ 8.4 Hz), 7.21 s (1H, CH_{Ind}), 8.13 t (1H, CH_{Py}, ${}^4J_{\text{HH}}$ 1.9 Hz), 8.32 d (1H, CH_{Py}, ${}^4J_{\text{HH}}$ 1.9 Hz). ${}^{19}\text{F}$ NMR spectrum (CDCl₃), δ_{F} , ppm: –47.46 d (CF_{Ar}, ${}^3J_{\text{FH}}$ 9.1 Hz). Found, %: C 74.47; H 6.63; N 12.76. C₂₀H₂₂FN₃. Calculated, %: C 74.28; H 6.86; N 12.99.

8-Methyl-5-[2-(5-fluoropyridin-3-yl)ethyl]-2-ethyl-2,3,4,5-tetrahydro-1*H*-pyrido[4,3-*b*]indole (IVb) was prepared similarly. Yield 2.6 g (77%), mp 93–95°C. 1 H NMR spectrum (CDCl₃), δ, ppm: 1.20 t (3H, Me, $^{3}J_{\text{HH}}$ 6.2 Hz), 2.46 m (5H, CH₂ + MeN), 2.63 m (2H, CH₂), 2.76 m (2H, CH₂), 3.01 t (2H, CH₂, $^{3}J_{\text{HH}}$ 6.3 Hz), 3.67 s (2H, CH₂), 4.20 t (2H, CH₂, $^{3}J_{\text{HH}}$ 6.3 Hz), 6.88 d. t (1H, CH_{Py}, $^{3}J_{\text{HF}}$ 9.1, $^{4}J_{\text{HH}}$ 1.9 Hz), 6.97 d (1H, CH_{Ind}, $^{3}J_{\text{HH}}$ 8.4 Hz), 7.10 d (1H, CH_{Ind}, $^{3}J_{\text{HH}}$ 8.4 Hz), 7.23 s (1H, CH_{Ind}), 8.16 t (1H, CH_{Py}, $^{4}J_{\text{HH}}$ 1.9 Hz), 8.32 d (1H, CH_{Py}, $^{4}J_{\text{HH}}$ 1.9 Hz). Found, %: C 74.56; H 7.03; N 12.67. C₂₁H₂₄FN₃. Calculated, %: C 74.75; H 7.17; N 12.45.

2,8-Dimethyl-5-[2-(6-trifluoromethylpyridin-3-yl)ethyl]-2,3,4,5-tetrahydro-1*H*-pyrido[4,3-*b*]indole

(Va). A mixture of 1 mmol of Ia, 1 mmol of III, 0.1 g of CsF and 0.02 g of hydroquinone in 1.5 mL of DMSO was heated with stirring at 150-160°C for 12 h. Then DMSO was removed in a vacuum at 3 mmHg. The product was extracted from the residue by CH₂Cl₂, evaporated, and chromatographed on silica gel (60 µm) eluting with MeOH—CHCl₃ mixture (1 : 15). Yield 2.8 g (75%), mp 94-96°C. ¹H NMR spectrum (CDCl₃), δ, ppm: 2.24 t (2H, CH₂, ³J_{HH} 5.3 Hz), 2.39 s (3H, Me), 2.42 s (3H, MeN), 2.53 t (2H, CH₂, ${}^{3}J_{HH}$ 5.3 Hz), 3.03 t (2H, CH₂, ${}^{3}J_{HH}$ 6.5 Hz), 3.47 s (2H, CH₂), 4.16 t (2H, CH₂, ³J_{HH} 6.5 Hz), 6.82 d (1H, CH_{Pv}, $^{3}J_{\text{HH}}$ 8.5 Hz), 6.93 d (1H, CH_{Ind}, $^{3}J_{\text{HH}}$ 6.5 Hz), 6.97 d (1H, CH_{Py}, ³J_{HH} 8.5 Hz), 7.07 br.s (1H, CH_{Ind}), 7.36 d $(1H, CH_{Ind}, {}^{3}J_{HH} 6.5 Hz), 8.34 br.s (1H, CH_{Pv}). {}^{19}F$ NMR spectrum (CDCl₃): δ_F 9.59 ppm. Found, %: C 67.72; H 6.13; N 10.98. C₂₁H₂₂F₃N₃. Calculated, %: C 67.55; H 5.94; N 11.25.

8-Methyl-5-[2-(6-trifluoromethylpyridin-3-yl)-ethyl]-2-ethyl-2,3,4,5-tetrahydro-1*H*-pyrido[4,3-*b*] indole (Vb) was prepared similarly. Yield 3.0 g (77%), mp 81–83°C. 1 H NMR spectrum (CDCl₃), δ, ppm: 1.19 t (3H, Me, $^{3}J_{HH}$ 7.3 Hz), 2.34–2.50 m (5H, CH₂ + MeN), 2.55–2.66 m (2H, CH₂), 2.72 t (2H, CH₂, $^{3}J_{HH}$ 5.6 Hz), 3.05 t (2H, CH₂, $^{3}J_{HH}$ 5.9 Hz), 3.65 s (2H, CH₂), 4.19 t (2H, CH₂, $^{3}J_{HH}$ 5.9 Hz), 6.94 d (1H, CH_{Py}, $^{3}J_{HH}$ 8.5 Hz), 7.04 d (1H, CH_{Py}, $^{3}J_{HH}$ 8.5 Hz), 7.21 br.s (1H, CH_{Ind}), 7.24 d (1H, CH_{Ind}, $^{3}J_{HH}$ 7.1 Hz), 8.37 br.s (1H, CH_{Py}). 19 F NMR spectrum (CDCl₃): δ_F 10.01 ppm. Found, %: C 68.41; H 6.03; N 10.66. C₂₂H₂₄F₃N₃. Calculated, %: C 68.20; H 6.24; N 10.85.

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (grant no. 14-03-00491-a) and the Department of Chemistry and Material Sciences of the Russian Academy of Sciences in the frame of the Program "Fundamental sciences to medicine."

REFERENCES

Seefeld, M.A., Miller, W.H., Newlander, K.A., Burgess, W.J., Payne, D.J., Rittenhouse, S.F., Moore, T.D., DeWolf, W.E., Keller, P.M., Qiu, X., Janson, C.A.,

- Vaidya, K., Fosberry, A.P., Smyth, M.G., Jaworski, D.D., Slater-Radosti, C., and Huffman, W.F., *Bioorg. Med. Chem. Lett.*, 2001, vol. 11, p. 2241. DOI: 10.1016/S0960-894X(01)00405-X.
- Kurland, A.A., Nagaraju, A., and Hanlon, T.E., *Clin. J. Pharmacol.*, 1982, vol. 22, p. 441. DOI: 10.1002/j.1552-4604.1982. tb02633.x.
- Khorana, N., Purohit, A., Herrick-Davis, K., Teitler, M., and Glennon, R.A., *Bioorg. Med. Chem.*, 2003, vol. 11, p. 717. DOI: 10.1016/S0968-0896(02)00527-8.
- Doody, R.S., Gavrilova, S.I., Sano, M., Thomas, R.G., Aisen, P.S., Bachurin, S.O., Seely, L., and Hung, D., *Lancet*, 2008, vol. 372, p. 207. DOI: 10.1016/S0140-6736(08)61074-0.
- Bachurin, S.O., Ustyugov, A.A., Peters, O., Shelkovnikova, T.A., Buchman, V.L., and Ninkina, N.N., *Dokl. Biochem. Phys. Chem.*, 2009, vol. 428, no. 1, p. 235. DOI: 10.1134/S1607672909050032.
- Vignisse, J., Steinbusch, H.W., Bolkunov, A., Nunes, J., Santos, Al., Grandfils, C., Bachurin, S., and Strekalova, T., *Prog. Neuro-Psychopharm. Biol. Psych.*, 2011, vol. 35, no. 2, p. 510. DOI: 10.1016/j.pnpbp.2010.12.007.
- 7. Bachurin, S.O., *Voprosy Med. Khim.*, 2001, vol. 47, no. 2, p. 155.
- Ivachtchenko, A.V., Mitkin, O.D., Kadieva, M.G., and Tkachenko, S.E., *Russ. Chem. Rev.*, 2010, vol. 79, no. 4, p. 285. DOI: 10.1070/RC2010v079n04ABEH004122.
- Peters, O.M., Connor-Robson, N., Sokolov, V.B., Aksinenko, A.Yu., Kukharsky, M.S., Bachurin, S.O., Ninkina, N.N., and Buchman, V.L., *J. Alzheimer's Disease*, 2013, vol. 33, no. 4, p. 1041. DOI: 10.3233/ JAD-2012-121732.
- Kost, A.N., Yurovskaya, M.A., Mel'nikova, T.V., and Potanina, O.I., *Chem. Heterocycl. Compd.*, 1973, vol. 9, no. 2, p. 191. DOI: 10.1007/BF00569159.
- Ivachtchenko, A.V., Frolov, E.B., Ivachtchenko, A.V., Khvat, A.V., Kysil, V.M., Mitkin, O.D., Okun, I.M., and Tkachenko, S.E., *Bioorg. Med. Chem. Lett.*, 2009, vol. 19, no. 12, p. 3183. DOI: 10.1016/j.bmcl.2009.04.128.
- 12. Dong, H., Driver, T.G., and Latka, R.T., *Org. Lett.*, 2011, vol. 13, no. 10, p. 2726. DOI: 10.1021/ol2008268.
- 13. Yakobson, G.G. and Bardin, V.V., *Ftorid-ion v organicheskoi khimii* (Fluoride Ion in Organic Chemistry), Novosibirsk: Nauka, 1986, 313 p.
- 14. Kochetkov, N.K., Kucherova, N.F., and Zukova, I.G., *Zh. Obshch. Khim.*, 1961, vol. 31, no. 6, p. 924.
- 15. Bachurin, S.O., Ustyugov, A.A., Ninkina, N.N., Sokolov, V.B., Aksinenko, A.Yu., Shelkovnikova, T.A., and Bolkunov, A.V., RF Patent no. 2490268, 2013.